
Fuzzy Systems and Soft Computing

ISSN : 1819-4362

A Comparative Analysis of Multiple Defect Tracking

Systems
Rajesh Kumar 1 ,Prasant Kumar Pani2

Raajdhani Engineering College, Bhubaneswar
1rajeshkumarsahoo@rec.ac.in
2prasantkumarpani@rec.ac.in

Abstract
Bug tracking systems, a cornerstone in many software

projects, facilitate communication between users and

developers by reporting issues and requesting new features.

Despite their importance, these systems are not flawless, and

no single system can be deemed the ultimate solution. Each

has its own strengths and weaknesses, with varying features

that contribute to their overall utility. While some may offer

additional features compared to others, they generally share

a common set of functionalities. This paper conducts a

comparative analysis of different defect tracking tools

currently accessible.

Keywords: Defects, Defect Tracking Systems,

Bugzilla.

I. Introduction

Today, the using bug tracking system for tracking bugs

and other issues is well spread. Bug tracking systems

are using for organizing and monitoring bugs.

Without these systems, monitoring a large amount of

bugs will be impossible or very hard. Because of that,

today there exist a lot of bug tracking systems. They

very differ by quality, security, costs, and functionality

they offer to the use. In this paper, we give short

overview of various aspects of some Defect Tracking

System with their advantages & Disadvantages.

II. Various Defect Tracking Systems

a) BUGZILLA:

Bugzilla is a very popular, actively maintained and

free bug tracking system, used and developed together

with Mozilla, giving it considerable credibility. It is

based on Perl and once it is set up, it seems to make

its users pretty happy. It's not highly

customizable. Bugzilla installations tend to look pretty

much the same wherever they are found, which means

many developers are already accustomed to its

interface and will feel they are in familiar territory.

Bugzilla has a very advanced reporting system and you

can create different types of charts including line

graph, bar graph or pie chart.

Bugzilla UI is strictly functional. There is nothing very

nice about it, it provides plenty of functions within a

small space, and in the beginning, the user can feel

quite uncomfortable and lost; however, after

discovering it, the user will find out that it is not very

complicated and working with it is straightforward.

Advantages & Disadvantages:

• Bugzilla notifies users of any new or updated

bugs by e-mail.

• Bugzilla supports basic time tracking.

• Bugzilla also supports a system of votes, in which

users can vote for issues or features they wish to

see implemented.

• Bugzilla is particularly complicated to install and

maintain,

• It supports large Projects.

• It doesn’t have user-friendly interface.

b) MANTIS:

Mantis is a free web-based bug tracking system. It is

written in the PHP scripting language and works with

MySQL, MS SQL, and PostgreSQL databases and a

web server. Mantis can be installed on Windows,

Linux, Mac OS and OS/2. Almost any web browser

should be able to function as a client. The main

complaint is its interface which doesn’t meet modern

mailto:rajeshkumarsahoo@rec.ac.in
mailto:PrasantKumarPani@rec.ac.in

439 Vol.05, Issue. 1, July-December: 2020

standards. On the other hand, is easy to navigate, even

for inexperienced users. There not exist some

advanced features such as charts and reports. In short,

the whole system is sloppily done; there are plenty of

bugs and very little functionality.

c) BUGTRACKER.NET:

BugTracker.NET is a free, open-source, web-based

bug tracker or customer support issue tracker written

using ASP.NET, C#, and Microsoft SQL Server

Express. BugTracker.NET is easy to install and learn

how to use. When you first install it, it is very simple

to setup and you can start using it right away. Later,

you can change its configuration to handle your needs.

It has a very intuitive interface for generating lists of

bugs. It has two very useful features. First of them is a

screen capture utility that enables you to capture the

screen, add annotations and post it as bug in just a few

clicks. The second feature is the fact that it can

integrate with your Subversion repository so that you

can associate file revision check-ins with bugs.

d) BUG-TRACK:

Bug-Track is web-based defect and bug tracking

software allows you to document manage and assign

all of your bugs and tasks and empowers you to

organize your bugs, defects or issues into distinct

projects. It can run on virtually any web-server like

Microsoft, Linux, Unix, etc... Since it is a commercial

application it is expected that it is better than other free

products. But it isn’t true. It has nothing new and better

than other free bug tracking systems. One better thing

is fact that it has more intuitive interface then others

and that is his only benefit.

e) REDMINE:

Redmine is a flexible web-based project management

web application. Written using Ruby on Rails

framework, it is cross-platform and cross-database.

Redmine is open source and released under the terms

of the GNU General Public License. Redmine is

flexible issue tracking system. We can define our

own statuses and issue types. It supports multiple

projects and subprojects. Each user can have a

different role on each project. Interface is very simple,

intuitive and easy to navigate. Redmine is a very good

recommended defect tracking system.

f) BUGZERO:

Bugzero is a web-based bug, defect, issue and incident

tracking software. Its single code base supports both

Windows and Unix and supports database systems

including Access, MySQL, SQL Server, Oracle, and

etc. Bugzero can be customized for software bug

tracking, hardware defect tracking, and help desk

customer support issue and incident tracking. Bugzero

have intuitive interface but it lacks form features. The

main drawback is the fact that Bugzero is an

commercial product and there are much better product

for free.

III. Factors to Classify Defect Tracking

System

These are the factors which are useful for average user

& they give an ease to use bug tracking system. These

factors also used for decision making for choosing best

Defect Tracking System.

Search is very useful criteria and it is present in all

selected products. Email notifications gives user

opportunity to be noticed about happenings in the

current bug tracking system. The user does not need to

check frequently bug tracking system for new

changes. All he need is an email account. Reports give

user a brief and concise overview about past

happenings in our system. Charts give clear graphical

view of selected criteria which is very intuitive to the

human being. Time tracking is an feature that give

information about happenings of some specific bug

trough time. Like an email RSS/Atom feed gives user

opportunity to be noticed about happenings in the

current bug tracking system. Configurable system is

capable to be configured to meet certain user needs, so

the system should be configurable as much as possible,

because that will help to satisfy the larger population

of customers. At the end, the much important issue for

choosing the right bug tracking

440 Vol.05, Issue. 1, July-December: 2020

system is the fact is it free or not and how much he

cost.

IV. Conclusion

Comparative study of some defect tracking system has

been done and it is seen that current Defect tracking

systems do not effectively collect all of the

information needed by developers. Without this

information developers cannot resolve defects timely

and so it has been seen that improvements to the way

issue tracking systems collect information are needed.

We have summarized factors that are used in modern

bug tracking systems. Such factors often don’t give

appropriate results in describing defect. Some

additional features must be added to the existing

Defect Tracking tools to enhance usability and

functionality.

References

[1] Aaen, I. (2003). Software Process Improvement:

Blueprints versus Recipes. IEEE Software 20(5),

86–93.

[2] Adeel, K., (Aug. 2005). Defect prevention

techniques and its usage in requirement gathering

– industry practices , Proceedings of Engineering

Sciences and Technology, ISBN 978-0-7803-

9442-1, SCONEST, IEEE Computer Society

Publisher, pp 1-5.

[3] Boehm, B. and V. Basili (2001). Software Defect

Reduction Top 10 List. Computer 34(1), 135–

138.

[4] Bassin, K. and P. Santhanam (2001). Managing

the maintenance of ported, outsourced, and legacy

software via orthogonal defect classification. In

Proceedings of the IEEE International Conference

on Software Maintenance, Washington, DC, pp.

726. IEEE Computer Society.

[5] Boehm, B. , Basili,V., (2001) Software Defect

Reduction Top 10 List Journal Computer archive

Volume 34 Issue 1, IEEE Computer Society,, CA,

USA

[6] Boehm, B. and V. Basili (2001). Software Defect

Reduction Top 10 List. Computer 34(1), 135–

138.

[7] Børretzen, J.A. , Conradi, R., (2003). “Results and

Experiences From an Empirical Study of Fault

Reports in Industrial Projects”, Proceedings of

the 7th International Conference

on Product Focused Software Process

Improvement, Amsterdam, pp. 389-394

[8] Børretzen, J.A. , (Sept. 2009) .Investigating the

Software Fault Profile of Industrial Projects to

Determine Process Improvement Areas: An

Empirical Study”, Proceedings of the 14th

European Systems & Software Process

Improvement and Innovation Conference,

Potsdam, Germany, pp. 212-223.

[9] Card, D. N. (2002). Managing software quality

with defects. In Proceedings of the 26th

International Computer Software and

Applications Conference on Prolonging Software

Life: Development and Re-development pp. 472–

474.

[10] Card, D.N., (October 2006). Myths and Strategies

of Defect Casual Analysis, Proceedings of

twenty-fourth Annual Pacific Northwest Software

Quality Conference, Portland, Oregon, pp 469-

474.

[11] Chillarege, R. and K. Prasad (2002). Test and

Development Process Retrospective -A Case

Study Using ODC Triggers. In Proceedings of the

International Conference on Dependable Systems

and Networks, Florence, Italy, pp. 669– 678.

IEEE Computer Society Press.

[12] Drago, J., (2011). “Role of Defect Management

Software in Software Development Life cycle”,

Available at -http://ezinearticles.com/?Role-of-

Defect-Management-Software-in-The-Software-

Development-Life-Cycle&id=6205930.

[13] Fredericks, M., Basili, V.,(1998). “Using defect

tracking and analysis to improve software

quality”. Report DACS-SOAR-98-2,

Experimental Software Engineering Group,

University of Maryland, College Park, MD, USA

[14] Fairley, R. E. and M. J. Willshire (2005). Iterative

rework: The good, the bad, and the ugly.

Computer 38(9), 34–41.

[15] Howles, T. and S. Daniels (2003). Widespread

Effects of Defects. Quality Progress 36(8), 58–

62.

[16] Humphrey, W. (2002). Winning with Software.

Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA.

[17] IEEE (2004). IEEE Standard for Verification and

Validation/IEEE Std. 1012-2004.

[18] Jones, C.(2009),” Software Engineering Best

Practices: Lessons from Successful Projects in the

Top Companies”. McGraw-Hill, New York, NY,

USA, 2009. ISBN 007162161X.

[19] Kaner, C. (2002). Bug Advokacy. Retrieved

from Cam Kaner Home Page:

http://www.kaner.com/pdfs/BugAdvocacy.pdf

http://ezinearticles.com/?Role-of-
http://www.kaner.com/pdfs/BugAdvocacy.pdf

441 Vol.05, Issue. 1, July-December: 2020

[20] Khilman, A., (2005). “Defect Management

Process in Software Testing”, Thesis submitted

in Faculty of Information Technology, MERA

Technical University.

[21] Lars Ola Damm (2007) "Early and Cost-effective

Fault Detection", Dissertation submitted to

Blekinge Institute of Technology, Sweden

[22] Leszak, M., D. Perry, and D. Stoll (2000). A Case

Study in Root Cause Defect Analysis. In

Proceedings of the 22nd Int. Conference on

Software Engineering, Limerick, Ireland, pp.

428–437. ACM Press.

[23] Leszak, M. (2002). Classification and evaluation

of defects in a project retrospective. Journal of

Systems and Software 61(3), 173–187.

[24] Lyu, M., (2007) “Software reliability engineering:

A roadmap”. In FOSE ’07: 2007 Future of

Software Engineering, pages 153–170,

Washington, DC, USA, 2007. IEEE Computer

Society. ISBN 0-7695-2829-5.

